1932

Abstract

Coastal systems are sensitive to direct and indirect impacts of climate change. Approximately 90% of all coastal areas will be affected by climate change to varying degrees. Nearly half of the world's major cities are located within 50 km of a coast, and coastal population densities are 2.6 times greater than those of inland areas, with a steep rise over the years. While coastal critical infrastructure is expanding, more social and physical systems are increasingly exposed to climate-induced hazards. The interconnectedness and interdependencies of critical infrastructure systems increase their systemic instability and fragility, resulting in greater dynamic risk and cascading impacts. Coastal critical infrastructure systems on several continents are at risk from the effects of climate change, including sea level rise, storm surges, and extreme weather events. Therefore, it is necessary to build and run climate-resilient infrastructure that is planned, designed, implemented, and operated to predict, be prepared for, and adapt to changing climatic circumstances. This review provides an up-to-date, objective, and critical assessment based on the literature to help determine what is known and what needs the future attention of researchers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112320-101903
2023-11-13
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112320-101903.html?itemId=/content/journals/10.1146/annurev-environ-112320-101903&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pile J, Gouramanis C, Switzer AD, Rush B, Reynolds I, Soria JLA. 2018. Can the risk of coastal hazards be better communicated?. Int. J. Disaster Risk Reduct. 27:439–50
    [Google Scholar]
  2. 2.
    De Andres M, Muñoz J. 2015. Analysis and trends of the world's coastal cities and agglomerations. Ocean Coast. Manag. 114:11–20
    [Google Scholar]
  3. 3.
    World Ocean Rev 2010. Living with the oceans: a report on the state of the world's oceans Rep. Maribus/Kiel Mar. Sci. Hamburg, Ger: https://worldoceanreview.com/en
  4. 4.
    Moser SC, Jeffress Williams S, Boesch DF. 2012. Wicked challenges at land's end: managing coastal vulnerability under climate change. Annu. Rev. Environ. Resour. 37:51–78
    [Google Scholar]
  5. 5.
    Costa Y, Martins I, de Carvalho GC, Barros F. 2023. Trends of sea-level rise effects on estuaries and estimates of future saline intrusion. Ocean Coast. Manag. 236:106490
    [Google Scholar]
  6. 6.
    Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Saha A, Shit M. 2023. Effects of climate change and sea-level rise on coastal habitat: vulnerability assessment, adaptation strategies and policy recommendations. J. Environ. Manag. 330:117187
    [Google Scholar]
  7. 7.
    Shukla PR, Skea J, Reisinger A, Slade R, Fradera Ret al 2022. Summary for policymakers. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change PR Shukla, J Skea, R Slade, A Al Khourdajie, R van Diemen, et al. 1–33. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  8. 8.
    Howard G, Calow R, Macdonald A, Bartram J. 2016. Climate change and water and sanitation: likely impacts and emerging trends for action. Annu. Rev. Environ. Resour. 41:253–76
    [Google Scholar]
  9. 9.
    Sunjo TE, Fuanyi AL. 2022. Problems of climate change–related hazards in African coastal communities Work. Pap. Univ. Buea Cameroon:
  10. 10.
    Dodman D, Hayward B, Pelling M, Castan Broto V, Chow WTL 2022. Cities, settlements and key infrastructure. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the 6th Assessment Report of the Intergovernmental Panel on Climate Change H-O Pörtner, D Roberts, M Tignor, E Poloczanska, K Mintenbeck, et al. 907–1040. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  11. 11.
    Dyring M, Hofmann H, Stanton D, Moss P, Froend R. 2022. Ecohydrology of coastal aquifers in humid environments and implications of a drying climate. Ecohydrology 16:2e2491
    [Google Scholar]
  12. 12.
    Doyle MW, Havlick DG. 2009. Infrastructure and the environment. Annu. Rev. Environ. Resour. 34:349–73
    [Google Scholar]
  13. 13.
    Freed A, Zimmerman R. 2022. Urban systems and services: vulnerabilities and impact. Climate Change and US Cities: Urban Systems, Sectors, and Prospects for Action WD Solecki, C Rosenzweig 79–203. Washington, DC: Island
    [Google Scholar]
  14. 14.
    Mukherjee M, Abhinay K, Rahman MM, Yangdhen S, Sen S et al. 2023. Extent and evaluation of critical infrastructure, the status of resilience and its future dimensions in South Asia. Prog. Disaster Sci. 17:100275
    [Google Scholar]
  15. 15.
    Zuniga-Teran AA, Gerlak AK, Mayer B, Evans TP, Lansey KE. 2020. Urban resilience and green infrastructure systems: towards a multidimensional evaluation. Curr. Opin. Environ. Sustain. 44:42–47
    [Google Scholar]
  16. 16.
    Croitoru L, Miranda JJ, Sarraf M. 2019. The cost of coastal zone degradation in West Africa: Benin, Côte d'Ivoire, Senegal and Togo Rep. World Bank Washington, DC:
  17. 17.
    Nissanka S, Malalgoda C, Amaratunga D, Haigh R. 2022. A review of climate change impact on the built environment in coastal regions. Proceedings of the 2nd International Symposium on Disaster Resilience and Sustainable Development, Vol. 1 Multi-Hazard Vulnerability, Climate Change and Resilience Building147–65. Singapore: Springer
    [Google Scholar]
  18. 18.
    Lara Carvajal GI, Sosa Echeverría R, Magaña V, Fernández Villagómez G, Kahl JDW. 2022. Assessment of chemical risks associated with hydrometeorological phenomena in a Mexican port on the Gulf of Mexico. J. Mar. Sci. Eng. 10:101518
    [Google Scholar]
  19. 19.
    Vázquez LM, Vandergeest P. 2022. Coastal erosion narratives in the Gulf of Mexico: implications for climate change governance. J. Political Ecol. 29:1705–24
    [Google Scholar]
  20. 20.
    NCEI (Natl. Cent. Environ. Inf.) 2023. U.S. billion-dollar weather and climate disasters Infographic, NCEI Washington, DC: https://www.ncei.noaa.gov/access/billions
  21. 21.
    Dong J, Asif Z, Shi Y, Zhu Y, Chen Z. 2022. Climate change impacts on coastal and offshore petroleum infrastructure and the associated oil spill risk: a review. J. Mar. Sci. Eng. 10:7849
    [Google Scholar]
  22. 22.
    Eakin H, Luers AL. 2006. Assessing the vulnerability of social-environmental systems. Annu. Rev. Environ. Resour. 31:365–94
    [Google Scholar]
  23. 23.
    Boin A, McConnell A. 2007. Preparing for critical infrastructure breakdowns: the limits of crisis management and the need for resilience. J. Conting. Crisis Manag. 15:150–59
    [Google Scholar]
  24. 24.
    Forzieri G, Bianchi A, Silva FBE, Marin Herrera MA, Leblois A et al. 2018. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48:97–107
    [Google Scholar]
  25. 25.
    Griggs GB. 2005. California's retreating coastline—where do we go from here?. Proceedings of California and the World Ocean ’02: Revisiting and Revising California's Ocean Agenda, Vol. 2121–25. Reston, VA: Am. Soc. Civ. Eng.
    [Google Scholar]
  26. 26.
    Bheemisetty S, Murali K, Sannasiraj SA, Sundaravadivelu R, Sundar V. 2019. Adaptation measures for coastal infrastructure Paper presented at National Seminar of Climate Change and Coastal Ocean Processes (CCCOP-2019) Delhi: July 4–5
  27. 27.
    Laurino I, Checon H, Corte G, Turra A. 2022. Does coastal armoring affect biodiversity and its functional composition on sandy beaches?. Mar. Environ. Res. 181:105760
    [Google Scholar]
  28. 28.
    Morris K, Mason W, Bywaters P, Featherstone B, Daniel B et al. 2018. Social work, poverty, and child welfare interventions. Child Fam. Soc. Work 23:3364–72
    [Google Scholar]
  29. 29.
    Mumford L. 1961. The City in History: Its Origins, Its Transformations and Its Prospects New York: Harcourt, Brace & World
  30. 30.
    Cvetkovich G, Earle TC. 1985. Classifying hazardous events. J. Environ. Psychol. 5:15–35
    [Google Scholar]
  31. 31.
    Glavovic BC. 2010. The role of land-use planning in disaster risk reduction: an introduction to perspectives from Australasia. Australas. J. Disaster Trauma Stud. 2010:1–22
    [Google Scholar]
  32. 32.
    Li Y, Li Y, Wu W. 2016. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region. Environ. Pollut. 208:87–95
    [Google Scholar]
  33. 33.
    Arnell NW, Lowe JA, Brown S, Gosling SN, Gottschalk P et al. 2013. A global assessment of the effects of climate policy on the impacts of climate change. Nat. Clim. Change 3:5512–19
    [Google Scholar]
  34. 34.
    Cruz AM, Krausmann E. 2013. Vulnerability of the oil and gas sector to climate change and extreme weather events. Clim. Change 121:141–53
    [Google Scholar]
  35. 35.
    Meyer V, Becker N, Markantonis V, Schwarze R, van den Bergh JCJM et al. 2013. Assessing the costs of natural hazards—state of the art and knowledge gaps. Nat. Hazards Earth Syst. Sci. 13:51351–73
    [Google Scholar]
  36. 36.
    Benedict MA, McMahon ET. 2002. Smart conservation for the 21st century. Green Infrastruct. 20:12–17
    [Google Scholar]
  37. 37.
    Buhr W. 2003. What is infrastructure? Discuss. Pap. 107-03 Univ. Siegen Siegen, Ger:.
  38. 38.
    Jerome A. 1999. Infrastructure in Africa: the record. Econ. Res. Pap. 46:1–28
    [Google Scholar]
  39. 39.
    Hill K. 2015. Coastal infrastructure: a typology for the next century of adaptation to sea-level rise. Front. Ecol. Environ. 13:9468–76
    [Google Scholar]
  40. 40.
    Stapelberg RF. 2007. Infrastructure systems interdependencies and risk informed decision making (RIDM): impact scenario analysis of infrastructure risks induced by natural, technological and intentional hazards. J. Syst. Cybern. Inform. 6:521–27
    [Google Scholar]
  41. 41.
    Di Palma M, Mazziotta C, Rosa G 1998. Infrastrutture e sviluppo. Primi risultati: indicatori quantitativi a confronto (987–95) Roma: Confindustria
  42. 42.
    Pres. Comm. Crit. Infrastruct. Prot 1997. Critical foundations: protecting America's infrastructures Final Rep. White House Washington, DC:
  43. 43.
    Jarraud M, Steiner A. 2012. Summary for policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change3–22. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  44. 44.
    Li Y, Li Y, Wu W. 2016. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region. Environ. Pollut. 208:87–95
    [Google Scholar]
  45. 45.
    Katina PF, Hester PT. 2013. Systemic determination of infrastructure criticality. Int. J. Crit. Infrastruct. 9:3211–25
    [Google Scholar]
  46. 46.
    Luiijf EAM, Burger HH, Klaver MHA. 2003. Critical infrastructure protection in the Netherlands: a quick-scan. EICAR Best Paper Proceedings UE Gattiker 1–19. Copenhagen: EICAR
    [Google Scholar]
  47. 47.
    Theoharidou M, Kotzanikolaou P, Gritza-Lis D. 2009. Risk-based criticality analysis. Proceedings of the 3rd IFIP WG 11.10 International Conference: Critical Infrastructure Protection III35–49. Berlin: Springer. IFIP Adv. Inf. Commun. Technol. Vol. 311
    [Google Scholar]
  48. 48.
    Oh EH, Deshmukh A, Hastak M. 2013. Criticality assessment of lifeline infrastructure for enhancing disaster response. Nat. Hazards Rev. 14:298–107
    [Google Scholar]
  49. 49.
    Aschauer DA. 1989. Is public expenditure productive?. J. Monet. Econ. 23:2177–200
    [Google Scholar]
  50. 50.
    Biehl D. 1991. The role of infrastructure in regional development. Infrastructure and Regional Development RW Vickerman 3–9. London: Pion
    [Google Scholar]
  51. 51.
    Hansen NM. 1965. The structure and determinants of local public investment expenditures. Rev. Econ. Stat. 47:2150–62
    [Google Scholar]
  52. 52.
    Fekete A. 2011. Common criteria for the assessment of critical infrastructures. Int. J. Disaster Risk Sci. 2:115–24
    [Google Scholar]
  53. 53.
    Grubesic TH, Matisziw TC. 2013. A typological framework for categorizing infrastructure vulnerability. GeoJournal 78:2287–301
    [Google Scholar]
  54. 54.
    Rinaldi SM, Peerenboom JP, Kelly TK. 2001. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 21:611–25
    [Google Scholar]
  55. 55.
    Bove G, Becker A, Sweeney B, Vousdoukas M, Kulp S. 2020. A method for regional estimation of climate change exposure of coastal infrastructure: case of USVI and the influence of digital elevation models on assessments. Sci. Total Environ. 710:136162
    [Google Scholar]
  56. 56.
    Mahendra RS, Mohanty PC, Bisoyi H, Kumar TS, Nayak S. 2011. Assessment and management of coastal multi-hazard vulnerability along the Cuddalore-Villupuram, east coast of India using geospatial techniques. Ocean Coast. Manag. 54:4302–11
    [Google Scholar]
  57. 57.
    Rehak D, Senovsky P, Hromada M, Lovecek T, Novotny P. 2018. Cascading impact assessment in a critical infrastructure system. Int. J. Crit. Infr. Prot. 22:125–38
    [Google Scholar]
  58. 58.
    Theocharidou M, Giannopoulos G. 2015. Risk assessment methodologies for critical infrastructure protection. Part II: A new approach Sci. Policy Rep. EUR 27332 EN Inst. Prot. Secur. Citiz., Joint Res. Cent., Eur. Comm.
  59. 59.
    Mohanty SK, Chatterjee R, Shaw R. 2020. Building resilience of critical infrastructure: a case of impacts of cyclones on the power sector in Odisha. Climate 8:673
    [Google Scholar]
  60. 60.
    Moteff J. 2005. Risk management and critical infrastructure protection: assessing, integrating, and managing threats, vulnerabilities and consequences Rep. Congr. RL32561 Congr. Res. Serv. Washington, DC:
  61. 61.
    Eur. Comm 2008. Council Directive 2008/114/EC. O.J. (345) 5
  62. 62.
    Koonce A, Apostolakis GE, Cook BK. 2008. Bulk power risk analysis: ranking infrastructure elements according to their risk significance. Int. J. Electr. Power Energy Syst. 30:169–83
    [Google Scholar]
  63. 63.
    Weil R, Apostolakis GE. 2001. A methodology for the prioritization of operating experience in nuclear power plants. Reliab. Eng. Syst. Saf. 74:123–42
    [Google Scholar]
  64. 64.
    Kostadinov V, Petelin S. 2004. Preliminary regulatory assessment of nuclear power plants vulnerabilities Paper presented at the International Conference Nuclear Energy for Central Europe 2004 Portorož, Slovenia: Sept. 6–9
  65. 65.
    Patterson SA, Apostolakis GE. 2007. Identification of critical locations across multiple infrastructures for terrorist actions. Reliab. Eng. Syst. Saf. 92:91183–203
    [Google Scholar]
  66. 66.
    Gokey J, Klein N, Mackey C, Santos J, Pillutla A, Tucker S. 2009. Development of a prioritization methodology for maintaining Virginia's bridge infrastructure systems. 2009 IEEE Systems and Information Engineering Design Symposium (SIEDS ’09)252–57. Piscataway, NJ: IEEE
    [Google Scholar]
  67. 67.
    Leung M, Lambert JH, Mosenthal A. 2004. A risk-based approach to setting priorities in protecting bridges against terrorist attacks. Risk Anal. 24:4963–84
    [Google Scholar]
  68. 68.
    Myers JD, Sorrentino MA. 2011. Regional critical infrastructure assessment: Kansas City. Int. J. Crit. Infrastruct. 7:158–72
    [Google Scholar]
  69. 69.
    Michaud D, Apostolakis GE. 2006. Methodology for ranking the elements of water-supply networks. J. Infrastruct. Syst. 12:4230–42
    [Google Scholar]
  70. 70.
    Katina PF, Hester PT. 2013. Systemic determination of infrastructure criticality. Int. J. Crit. Infrastruct. 9:3211–25
    [Google Scholar]
  71. 71.
    Vespignani A. 2010. The fragility of interdependency. Nature 464:7291984–85
    [Google Scholar]
  72. 72.
    Rinaldi SM, Peerenboom JP, Kelly TK. 2001. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 21:611–25
    [Google Scholar]
  73. 73.
    Perkins S. 2011. Electric highway. Nat. Clim. Change 1:281
    [Google Scholar]
  74. 74.
    Jaroszweski D, Chapman L, Petts J. 2010. Assessing the potential impact of climate change on transportation: the need for an interdisciplinary approach. J. Transp. Geogr. 18:2331–35
    [Google Scholar]
  75. 75.
    Schmidt GA, Moyer EJ. 2008. A new kind of scientist. Nat. Clim. Change 1:102–3
    [Google Scholar]
  76. 76.
    Jaiswal A, Kumar A, Pal I, Raisinghani B, Bhoraniya TH. 2022. Sustainable management of coastal critical infrastructure: case study of multi-purpose cyclone shelters in South Asia. Int. J. Disaster Resil. Built Environ. 13:3304–26
    [Google Scholar]
  77. 77.
    Pal I, Doydee P, Utarasakul T, Jaikaew P, Bin Razak KA et al. 2021. System approach for flood vulnerability and community resilience assessment at the local level—a case study of Sakon Nakhon Province, Thailand. Kasetsart J. Soc. Sci. 42:1107–16
    [Google Scholar]
  78. 78.
    Argyroudis SA, Mitoulis SA, Chatzi E, Baker JW, Brilakis I et al. 2022. Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manag. 35:100387
    [Google Scholar]
  79. 79.
    Gampe D, Zscheischler J, Reichstein M, O'Sullivan M, Smith WK et al. 2021. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11:9772–79
    [Google Scholar]
  80. 80.
    van Vliet MTH, van Beek LPH, Eisner S, Flörke M, Wada Y, Bierkens MFP. 2016. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob. Environ. Change 40:156–70
    [Google Scholar]
  81. 81.
    Schewe J, Gosling SN, Reyer C, Zhao F, Ciais P et al. 2019. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10:1005
    [Google Scholar]
  82. 82.
    Monier E, Paltsev S, Sokolov A, Chen Y-HH, Gao X et al. 2018. Toward a consistent modeling framework to assess multi-sectoral climate impacts. Nat. Commun. 9:660
    [Google Scholar]
  83. 83.
    Thanvisitthpon N, Shrestha S, Pal I. 2018. Urban flooding and climate change: a case study of Bangkok, Thailand. Environ. Urban. Asia 9:186–100
    [Google Scholar]
  84. 84.
    Varianou Mikellidou C, Shakou LM, Boustras G, Dimopoulos C. 2018. Energy critical infrastructures at risk from climate change: a state of the art review. Saf. Sci. 110:C110–20
    [Google Scholar]
  85. 85.
    Peterson TC, Stott PA, Herring S. 2012. Explaining extreme events of 2011 from a climate perspective. Bull. Am. Meteorol. Soc. 93:71041–67
    [Google Scholar]
  86. 86.
    Mann ME, Rahmstorf S, Steinman BA, Tingley M, Miller SK. 2016. The likelihood of recent record warmth. Sci. Rep. 6:19831
    [Google Scholar]
  87. 87.
    van Oldenborgh GJ, van der Wiel K, Sebastian A, Singh R, Arrighi J et al. 2017. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 12:124009
    [Google Scholar]
  88. 88.
    Pal I, Ghosh T, Ghosh C. 2017. Institutional framework and administrative systems for effective disaster risk governance—perspectives of 2013 Cyclone Phailin in India. Int. J. Disaster Risk Reduct. 21:350–59
    [Google Scholar]
  89. 89.
    Botzen WJW, van den Bergh JCJM. 2008. Insurance against climate change and flooding in the Netherlands: present, future, and comparison with other countries. Risk Anal. 28:2413–26
    [Google Scholar]
  90. 90.
    Wilbanks T, Fernandez S, eds. 2012. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities: Technical Report for the US Department of Energy in Support of the National Climate Assessment Washington, DC: Island
  91. 91.
    Sandhu SC, Kelkar V, Sankaran V. 2019. Resilient coastal cities for enhancing tourism economy: integrated planning approaches Work. Pap. 1043 Asian Dev. Bank Inst. Tokyo:
  92. 92.
    Kulp SA, Strauss BH. 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10:4844
    [Google Scholar]
  93. 93.
    Molua E. 2009. Accommodation of climate change in coastal areas of Cameroon: selection of household-level protection options. Mitig. Adapt. Strateg. Glob. Change 14:721–35
    [Google Scholar]
  94. 94.
    Birkmann J, Garschagen M, Kraas F, Quang N. 2010. Adaptive urban governance: new challenges for the second generation of urban adaptation strategies to climate change. Sustain. Sci. 5:2185–206
    [Google Scholar]
  95. 95.
    Smith KB, Larimer CW, Littvay L, Hibbing JR. 2007. Evolutionary theory and political leadership: why certain people do not trust decision makers. J. Politics 69:2285–99
    [Google Scholar]
  96. 96.
    Figueiredo L, Honiden T, Schumann A. 2018. Indicators for resilient cities Reg. Dev. Work. Pap. 2018/02 OECD Paris:
  97. 97.
    Nicholls RJ, Tol RSJ. 2006. Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philos. Trans. R. Soc. A 364:18411073–95
    [Google Scholar]
  98. 98.
    Ferrier S, Ninan KN, Leadley P, Alkemade R, Acosta LA et al., eds. 2016. Summary for policymakers. Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services1–32. Bonn, Ger.: Secr. Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
    [Google Scholar]
  99. 99.
    Rounsevell M, Dawson T, Harrison PA. 2010. A conceptual framework to assess the effects of environmental change on ecosystem services. Biodivers. Conserv. 19:2823–42
    [Google Scholar]
  100. 100.
    Rahman HMT. 2018. Livelihood vulnerability to climatic stresses: a study of the northeastern flood plain communities of Bangladesh PhD Thesis McGill Univ. Montreal, Can:.
  101. 101.
    O'Brien K, Eriksen S, Nygaard LP, Schjolden ANE. 2007. Why different interpretations of vulnerability matter in climate change discourses. Clim. Policy 7:173–88
    [Google Scholar]
  102. 102.
    Füssel H-M. 2007. Adaptation planning for climate change: concepts, assessment approaches and key lessons. Sustain. Sci. 2:265–75
    [Google Scholar]
  103. 103.
    Ford JD, Pearce T. 2012. Climate change vulnerability and adaptation research focusing on the Inuit subsistence sector in Canada: directions for future research. Can. Geogr./Géogr. Can. 56:2275–87
    [Google Scholar]
  104. 104.
    Adger WN. 2006. Vulnerability. Glob. Environ. Change 16:3268–81
    [Google Scholar]
  105. 105.
    van Slobbe E, de Vriend HJ, Aarninkhof S, Lulofs K, de Vries M, Dircke P. 2013. Building with nature: in search of resilient storm surge protection strategies. Nat. Hazards 65:1947–66
    [Google Scholar]
  106. 106.
    Aerts JCJH, Botzen WJW, Emanuel KA, Lin N, de Moel H, Michel-Kerjan EO. 2014. Evaluating flood resilience strategies for coastal megacities. Science 344:473–75
    [Google Scholar]
  107. 107.
    Barbier EB. 2012. Progress and challenges in valuing coastal and marine ecosystem services. Rev. Environ. Econ. Policy 6:11–19
    [Google Scholar]
  108. 108.
    Sheaves M, Brookes J, Coles R, Freckelton M, Groves P et al. 2014. Repair and revitalisation of Australia's tropical estuaries and coastal wetlands: opportunities and constraints for the reinstatement of lost function and productivity. Mar. Policy 47:23–38
    [Google Scholar]
  109. 109.
    Chaffin B, Garmestani A, Gunderson L, Benson M, Angeler D et al. 2016. Transformative environmental governance. Annu. Rev. Environ. Resour. 41:399–423
    [Google Scholar]
  110. 110.
    Klein RJT, Smit MJ, Goosen H, Hulsbergen CH. 1998. Resilience and vulnerability: coastal dynamics or Dutch dikes?. Geogr. J. 164:3259–68
    [Google Scholar]
  111. 111.
    Flood S, Schechtman J. 2014. The rise of resilience: evolution of a new concept in coastal planning in Ireland and the US. Ocean Coast. Manag. 102:19–31
    [Google Scholar]
  112. 112.
    Masselink G, Lazarus ED. 2019. Defining coastal resilience. Water 11:122587
    [Google Scholar]
  113. 113.
    Chowdhury MSN, La Peyre M, Coen LD, Morris RL, Luckenbach MW et al. 2021. Ecological engineering with oysters enhances coastal resilience efforts. Ecol. Eng. 169:106320
    [Google Scholar]
  114. 114.
    Lebel L, Manuta JB, Garden P. 2011. Institutional traps and vulnerability to changes in climate and flood regimes in Thailand. Reg. Environ. Change 11:45–58
    [Google Scholar]
  115. 115.
    Ketsomboon B, von der Dellen K. 2013. Climate vulnerability and capacity analysis report: south of Thailand Rep. CARE Dtsch.-Luxemb./Raks Thai Found. Bangkok:
  116. 116.
    Rosenow-Williams K. 2018. Visualizing climate change adaptation. Vis. Methodol. 5:221–34
    [Google Scholar]
  117. 117.
    Sharifi A. 2020. Trade-offs and conflicts between urban climate change mitigation and adaptation measures: a literature review. J. Clean. Prod. 276:122813
    [Google Scholar]
  118. 118.
    Dovie DBK. 2019. Case for equity between Paris climate agreement's co-benefits and adaptation. Sci. Total Environ. 656:732–39
    [Google Scholar]
  119. 119.
    Patrick CJ, Kominoski JS, McDowell WH, Branoff B, Lagomasino D et al. 2022. A general pattern of trade-offs between ecosystem resistance and resilience to tropical cyclones. Sci. Adv. 8:9eabl9155
    [Google Scholar]
  120. 120.
    Dash B, Walia A. 2020. Role of multi-purpose cyclone shelters in India: last mile or neighbourhood evacuation. Trop. Cyclone Res. Rev. 9:4206–17
    [Google Scholar]
  121. 121.
    Beatley T. 2012. Planning for Coastal Resilience: Best Practices for Calamitous Times Washington, DC: Island
  122. 122.
    Cutter SL. 2014. Building disaster resilience: steps toward sustainability. Chall. Sustain. 1:272–79
    [Google Scholar]
  123. 123.
    Füssel H-M, Klein RJT. 2006. Climate change vulnerability assessments: an evolution of conceptual thinking. Clim. Change 75:3301–29
    [Google Scholar]
  124. 124.
    Schneider SH, Semenov S, Patwardhan A, Burton I, Magadza CHD et al. 2007. Assessing key vulnerabilities and the risk from climate change. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the 4th Assessment Report of the Intergovernmental Panel on Climate Change ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson 779–810. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  125. 125.
    Shen S, Feng X, Peng ZR. 2016. A framework to analyze vulnerability of critical infrastructure to climate change: the case of a coastal community in Florida. Nat. Hazards 84:589–609
    [Google Scholar]
  126. 126.
    Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW et al. 2003. A framework for vulnerability analysis in sustainability science. PNAS 100:148074–79
    [Google Scholar]
  127. 127.
    Small C, Nicholls RJ. 2003. A global analysis of human settlement in coastal zones. J. Coast. Res. 19:3584–99
    [Google Scholar]
  128. 128.
    Charlier RH. 1989. Coastal zone: occupance, management and economic competitiveness. Ocean Shorel. Manag. 12:5/6383–402
    [Google Scholar]
  129. 129.
    Creel L. 2003. Ripple Effects: Population and Coastal Regions Washington, DC: Popul. Ref. Bur.
  130. 130.
    McGranahan G, Balk D, Anderson B. 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19:117–37
    [Google Scholar]
  131. 131.
    Wetzel FT, Kissling WD, Beissmann H, Penn DJ. 2012. Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity. Glob. Change Biol. 18:92707–19
    [Google Scholar]
  132. 132.
    McFadden L. 2007. Governing coastal spaces: the case of disappearing science in integrated coastal zone management. Coast. Manag. 35:4429–43
    [Google Scholar]
  133. 133.
    Rathnayaka B, Siriwardana C, Robert D, Amaratunga D, Setunge S. 2022. Improving the resilience of critical infrastructure: evidence-based insights from a systematic literature review. Int. J. Disaster Risk Reduct. 78:103123
    [Google Scholar]
  134. 134.
    Nitivattananon V, Srinonil S. 2019. Enhancing coastal areas governance for sustainable tourism in the context of urbanization and climate change in eastern Thailand. Adv. Clim. Change Res. 10:147–58
    [Google Scholar]
  135. 135.
    Habitat U. 2016. Urbanization and development: emerging futures. World Cities Rep. 3:44–51
    [Google Scholar]
  136. 136.
    Michailidou AV, Vlachokostas C, Moussiopoulos Ν. 2016. Interactions between climate change and the tourism sector: multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas. Tour. Manag. 55:1–12
    [Google Scholar]
  137. 137.
    Panigrahi JK, Mohanty PK. 2012. Effectiveness of the Indian coastal regulation zones provisions for coastal zone management and its evaluation using SWOT analysis. Ocean Coast. Manag. 65:34–50
    [Google Scholar]
  138. 138.
    Muhammed I. 2020. Coastal regulation zone notification: a scanty regime LLM Diss. Natl. Univ. Adv. Leg. Stud. Kochi, India:
  139. 139.
    Clote P. 2008. Implications of global warming on state sovereignty and arctic resources under the United Nations Convention on the Law of the Sea: how the Arctic is no longer communis omnium naturali jure. Richmond J. Glob. Law Bus. 8:24
    [Google Scholar]
  140. 140.
    Iglesias-Campos A, Rubeck J, Sanmiguel-Esteban D, Schwarz G, Ansong JO. 2021. MSPglobal: International Guide on Marine/Maritime Spatial Planning Paris: UNESCO
  141. 141.
    Howard R. 2009. The Arctic Gold Rush: The New Race for Tomorrow's Natural Resources London: Bloomsbury
  142. 142.
    King D. 2008. Reducing hazard vulnerability through local government engagement and action. Nat. Hazards 47:497–508
    [Google Scholar]
  143. 143.
    Kerubo Nyasimi M, Omoyo Nyandiko N, Partey S, Ramasamy J, Yasukawa S. 2022. Toward Gender-Responsive and Technology-Oriented Disaster Management in Eastern Africa Paris: UNESCO
  144. 144.
    Olaniyan FA, Adelekan IO, Nwokocha EE. 2020. The role of local governments in reducing disaster losses and vulnerabilities in Ibadan City, Nigeria Rep. UN Off. Disaster Risk Reduct. Geneva:
  145. 145.
    Winthrop R, Anderson K, Cruzalegui I. 2015. A review of policy debates around learning in the post-2015 education and development agenda. Int. J. Educ. Dev. 40:297–307
    [Google Scholar]
  146. 146.
    Thacker S, Adshead D, Fay M, Hallegatte S, Harvey M et al. 2019. Infrastructure for sustainable development. Nat. Sustain. 2:4324–31
    [Google Scholar]
  147. 147.
    Church JA, White NJ. 2006. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33:1L01602
    [Google Scholar]
  148. 148.
    Lee SB, Li M, Zhang F. 2017. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. J. Geophys. Res. Oceans 122:53917–38
    [Google Scholar]
  149. 149.
    Ward PJ, Jongman B, Weiland FS, Bouwman A, van Beek R et al. 2013. Assessing flood risk at the global scale: model setup, results, and sensitivity. Environ. Res. Lett. 8:044019
    [Google Scholar]
  150. 150.
    Wahl T, Haigh ID, Nicholls RJ, Arns A, Dangendorf S et al. 2017. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 8:16075
    [Google Scholar]
  151. 151.
    Apel H, Merz B, Thieken AH. 2008. Quantification of uncertainties in flood risk assessments. Int. J. River Basin Manag. 6:2149–62
    [Google Scholar]
  152. 152.
    Najafi MR, Zhang Y, Martyn N. 2021. A flood risk assessment framework for interdependent infrastructure systems in coastal environments. Sustain. Cities Soc. 64:102516
    [Google Scholar]
  153. 153.
    Bevacqua E, Maraun D, Hobæk Haff I, Widmann M, Vrac M 2017. Multivariate statistical modelling of compound events via pair–copula constructions: analysis of floods in Ravenna (Italy). Hydrol. Earth Syst. Sci. 21:62701–23
    [Google Scholar]
  154. 154.
    Emanuelsson MAE, Mcintyre N, Hunt CF, Mawle R, Kitson J, Voulvoulis N. 2014. Flood risk assessment for infrastructure networks. J. Flood Risk Manag. 7:131–41
    [Google Scholar]
  155. 155.
    Calida BY, Katina PF. 2012. Regional industries as critical infrastructures: a tale of two modern cities. Int. J. Crit. Infrastruct. 8:174–90
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112320-101903
Loading
/content/journals/10.1146/annurev-environ-112320-101903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error